Two novel direct SPIO labels and in vivo MRI detection of labeled cells after acute myocardial infarct

نویسندگان

  • Riikka M Korpi
  • Kirsi Alestalo
  • Timo Ruuska
  • Eveliina Lammentausta
  • Ronald Borra
  • Fredrik Yannopoulos
  • Siri Lehtonen
  • Jarkko T Korpi
  • Elisa Lappi-Blanco
  • Vesa Anttila
  • Petri Lehenkari
  • Tatu Juvonen
  • Roberto Blanco Sequieros
چکیده

BACKGROUND Acute myocardial infarction (AMI) is a leading cause of morbidity and mortality worldwide. Cellular decay due hypoxia requires rapid and validated methods for possible therapeutic cell transplantation. PURPOSE To develop direct and rapid superparamagnetic iron oxide (SPIO) cell label for a large-animal model and to assess in vivo cell targeting by magnetic resonance imaging (MRI) in an experimental AMI model. MATERIAL AND METHODS Bone marrow mononuclear cells (BMMNCs) were labeled with SPIO particles using two novel direct labeling methods (rotating incubation method and electroporation). Labeling, iron incorporation in cells and label distribution, cellular viability, and proliferation were validated in vitro. An AMI porcine model was used to evaluate the direct labeling method (rotating incubation method) by examining targeting of labeled BMMNCs using MRI and histology. RESULTS Labeling (1 h) did not alter either cellular differentiation potential or viability of cells in vitro. Cellular relaxation values at 9.4 T correlated with label concentration and MRI at 1.5 T showing 89 ± 4% signal reduction compared with non-labeled cells in vitro. In vivo, a high spatial correlation between MRI and histology was observed. The extent of macroscopic pathological myocardial changes (hemorrhage) correlated with altered function detected on MRI. CONCLUSION We demonstrated two novel direct SPIO labeling methods and demonstrated the feasibility of clinical MRI for monitoring targeting of the labeled cells in animal models of AMI.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effects of iron oxide nanoparticles on cardiac differentiation of embryonic stem cells.

The therapeutic potential of transplantation of embryonic stem cells (ESCs) in animal model of myocardial infarction has been consistently demonstrated. The development of superparamagnetic iron oxide (SPIO) nanoparticles labeling and cardiac magnetic resonance imaging (MRI) have been increasingly used to track the migration of transplanted cells in vivo allowing cell fate determination. Howeve...

متن کامل

In vivo magnetic resonance imaging tracking of transplanted superparamagnetic iron oxide-labeled bone marrow mesenchymal stem cells in rats with myocardial infarction

Superparamagnetic iron oxide (SPIO) nanoparticles generate superparamagnetism, thereby resulting in an inhomogeneous local magnetic field, which shortens the T2 value on magnetic resonance imaging (MRI). The purpose of the present study was to use MRI to track bone marrow mesenchymal stem cells (BMSCs) labeled with SPIO in a rat model of myocardial infarction. The BMSCs were isolated from rats ...

متن کامل

Restorative effects of alpha-1A adrenergic are detectable using T2* and targeted nanoparticles in a mouse myocardial infarction (MI) model

Background Apoptosis is believed to play a major role in the progressive weakening of the peri-infarct and remote zone myocardium after myocardial infarction (MI). Our laboratory previously developed an in vivo, MRI-detectable apoptosis probe. Annexin-V (ANX), which binds to cells undergoing apoptosis, was conjugated to superparamagnetic iron oxide (SPIO) nanoparticles, allowing for the non-inv...

متن کامل

In Vivo Tracing of Human Umbilical Cord Matrix Stem Cells Useing MRI

Purpose: Human umbilical cord matrix (UCM) (Wharton jelly) stem cells labeling are tracking by MRI. Materials and Methods: After 48 hours incubation with USPIO human umbilical cord matrix (UCM) stem cells were labeled with USPIO by the means of receptor-mediated endocytosis. Prussian blue staining and Atomic absorption spectroscopy were performed to identify and show the iron oxide nanoparticle...

متن کامل

In vivo visualization and ex vivo quantification of murine breast cancer cells in the mouse brain using MRI cell tracking and electron paramagnetic resonance.

Cell tracking could be useful to elucidate fundamental processes of cancer biology such as metastasis. The aim of this study was to visualize, using MRI, and to quantify, using electron paramagnetic resonance (EPR), the entrapment of murine breast cancer cells labeled with superparamagnetic iron oxide particles (SPIOs) in the mouse brain after intracardiac injection. For this purpose, luciferas...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2017